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Abstract This paper describes the Boost C++Template Metaprogramming Library (MPL),
an extensible compile-time framework of algorithms, sequences and function
classes. The library brings together important abstractions from the generic
and functional programming worlds to build a powerful and easy-to-use toolset
which makes template metaprogramming practical enough for the real-world en-
vironments. The MPL is heavily influenced by its run-time equivalent - the Stan-
dard Template Library (STL), a part of the C++ standard library. Like the STL,
it defines an open conceptual and implementation framework which can serve as
a foundation for future contributions in the domain. The library’s fundamental
concepts and idioms enable the user to focus on solutions without navigating the
universe of possible ad-hoc approaches to a given metaprogramming problem,
even if no actual MPL code is used. The Boost Metaprogramming Libraryalso
provides a compile-time lambda expression facility enabling arbitrary currying
and composition of class templates, a feature whose runtime counterpart is often
cited as missing from the STL. This paper explains the motivation, usage, de-
sign, and implementation of the MPL with examples of its real-life applications,
and offers some lessons learned about C++ template metaprogramming.

Keywords: programming languages, type systems, generic programming, polymorphism,
metaprogramming, compile-time

1. Introduction
Metaprogramming is usually defined as the creation of programs which

generate other programs. Parser generators such as YACC are examples of
one kind of program-generating program. The input language to YACC is
a context-free grammar in EBNF, and its output is a program which parses
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that grammar. Note that in this case the metaprogram (YACC) is written in
a language (‘C’) which does not directly support the description of generated
programs. These specifications, which we’ll callmetadata, are not written in
‘C’, but in a meta-language. Because the the rest of the user’s program typi-
cally requires a general-purpose programming system and must interact with
the generated parser, the metadata is translated into ‘C’, which is then compiled
and linked together with the rest of the system. The metadata thus undergoes
two translation steps, and the user is always very conscious of the boundary
between his metadata and the rest of his program.

1.1. Native Language Metaprogramming
A more interesting form of metaprogramming is available in languages such

as Scheme, where the generated program specification is given in the same
language as the metaprogram itself. The metaprogrammer defines his meta-
language as a subset of the expressible forms of the underlying language, and
program generation can take place in the same translation step used to pro-
cess the rest of the user’s program. This allows users to switch transparently
between ordinary programming, generated program specification, and meta-
programming, often without being aware of the transition.

1.2. Metaprogramming in C++

In C++, it was discovered almost by accident?; ? that the template mech-
anism provides a rich facility for computation at compile-time. In this sec-
tion, we’ll explore the basic mechanisms and some common idioms used for
metaprogramming in C++.

1.2.1 Numeric Computations. The availability ofnon-type tem-
plate parametersmakes it possible to perform integer computations at compile-
time. For example, the following template computes the factorial of its argu-
ment:

template <unsigned n>

struct factorial

{

static const unsigned value = n * factorial<n-1>::value;

};

template <>

struct factorial<0>

{

static const unsigned value = 1;

};
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The program fragment above is called ametafunction, and it is easy to see
its relationship to a function designed to be evaluated at runtime: the “meta-
function argument” is passed as a template parameter, and its “return value”
is defined as a nested static constant. Because of the hard line between the
expression of compile-time and runtime computation in C++, metaprograms
look different from their runtime counterparts. Thus, although as in Scheme
the C++ metaprogrammer writes her code in the same language as the ordinary
program, only a subset of the full C++ language is available to her: those
expressions which can be evaluated at compile-time. Compare the above with
a straightforward runtime definition of the factorial function:

unsigned factorial(unsigned N)

{

return N == 0 ? 1 : N * factorial(N - 1);

}

While it is easy to see the analogy between the two recursive definitions, re-
cursion is in general more important to C++ metaprograms than it is to runtime
C++. In contrast to languages such as Lisp where recursion is idiomatic, C++
programmers will typically avoid recursion when possible. This is done not
only for efficiency reasons, but also because of “cultural momentum”: recur-
sive programs are simply harder (for C++ programmers) to think about. Like
pure Lisp, though, the C++ template mechanism is afunctionalprogramming
language: as such it rules out the use of data mutation required to maintain
loop variables.

A key difference between the runtime and compile-time factorial functions
is the expression of the termination condition: our meta-factorial uses template
specialization as a kind ofpattern-matchingmechanism to describe the behav-
ior whenN is zero. The syntactic analogue in the runtime world would require
two separate definitions of the same function. In this case the impact of the sec-
ond definition is minimal, but in large metaprograms the cost of maintaining
and understanding the terminating definitions can become significant.

Note also that a C++ metafunction’s return value must benamed. The name
chosen here,value , is the same one used for all numeric returns in the Boost
Metaprogramming Library. As we’ll see, establishing a consistent naming con-
vention for metafunction returns is crucial to the power of the library.

1.2.2 Type Computations. How could we apply ourfactorial<>

metafunction? We might, for example, produce an array type of an appropriate
size to hold all permutations of instances of another type:

// permutation_holder<T>::type is an array type which can contain
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// all permutations of a given T.

// unspecialized template for scalars

template <class T> struct permutation_holder

{

typedef T type[1][1];

};

// specialization for array types

template <class T, unsigned N> struct permutation_holder<T[N]>

{

typedef T type[factorial<N>::value][N];

};

Here we have introduced the notion of atype computation. Like factorial<>

above,permutation holder<> is a metafunction. However, wherefactorial<>

manipulates unsigned integer values,permutation holder<> accepts and “re-
turns” a type (as the nested typedef “type ”). Because the C++ type system pro-
vides a much richer set of expressions than anything we can use as a nontype
template argument (e.g. the integers), C++ metaprograms tend to be composed
mostly of type computations.

1.2.3 Type Sequences. The ability to programmatically manipu-
late collections of types is a central tool of most interesting C++ metaprograms.
Because this capability is so well-supported by the MPL, we’ll provide just a
brief introduction to the basics here.

First, we’d need a way to represent the collection. One idea might be to
store the types in a structure:

struct types {

int t1;

long t2;

std::vector<double> t3;

};

Unfortunately, this arrangement is not susceptible to the compile-time type
introspection power that C++ gives us: there’s no way to find out what the
names of the members are, and even if we assume that they’re named accord-
ing to some convention as above, there’s no way to now how many members
there are. The key to solving this problem is to increase the uniformity of the
representation. If we have a consistent way to get the first type of any sequence
and the rest of the sequence, we can easily access all members:
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template <class First, class Rest>

struct cons

{

typedef First first;

typedef Rest rest;

};

struct nil {};

typedef

cons<int, cons<long, cons<std::vector<double>, nil> > >

my_types;

The structure described bytypes above is the compile-time analogue of
a singly-linked list. Now that we’ve adjusted the structure so that the C++
template machinery can “peel it apart”, let’s examine a simple function which
does so. Suppose a user wished to find the largest of an arbitrary collection of
types. We can apply the recursive metafunction formula which should by now
be familiar:

// Choose the larger of two types

template <class T1, class T2

, bool choose1 = (sizeof(T1) > sizeof(T2)) // hands off!

>

struct choose_larger

{

typedef T1 type;

};

// specialization for the case where sizeof(T2) >= sizeof(T1)

template <class T1, class T2>

struct choose_larger<T1,T2,false>

{

typedef T2 type;

};

// Get the largest of a cons-list

template <class T> struct largest;

// Specialization to peel apart the cons list

template <class First, class Rest>

struct largest<cons<First,Rest> >

: choose_larger<First, typename largest<Rest>::type>

{

// type inherited from base
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};

// specialization for loop termination

template <class First>

struct largest<cons<First,nil> >

{

typedef First type;

};

int main()

{

// print the name of the largest of my_types

std::cout << typeid(largest<my_types>::type).name()

<< std::endl;

}

There are several things worth noticing about this code:

It uses a few ad-hoc, esoteric techniques, or “hacks”. The default tem-
plate argumentchoose1 (labelled “hands off!”) is one example. With-
out it, we would have needed yet another template to provide the im-
plementation ofchoose larger , or we would have had to provide the
computation explicitly as a parameter to the template - perhaps not bad
for this example, but it would make chooselarger much less useful and
more error-prone. The other hack is the derivation of a specialization
of largest from choose larger . This is a code-saving device which
allows the programmer to avoid writingtypedef typename ...::type

type in the template body.

Even this simple metaprogram uses three separate partial specializations.
The largest metafunction usestwo specializations. One might expect
that this indicates there are two termination conditions, but there are
not: one specialization is needed simply to deal with access to the se-
quence elements. These specializations make the code difficult to read
by spreading the definition of a single metafunction over several C++
template definitions. Also, because they arepartial specializations, they
make the code unusable for a large community of C++ programmers
whose compilers don’t support that feature.

While these techniques are of course a valuable part of the arsenal of any
good C++ metaprogrammer, their use tends to make programs written in what
is already an unusual style harder-to-read and harder-to-write. By encapsulat-
ing commonly-used structures and dealing with loop terminations internally,
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the Boost Metaprogramming Library reduces the need for both tricky hacks
and for template specializations.

1.3. Why Metaprogramming?
It’s worth asking why anyone would want to do this. After all, even a simple

toy example like the factorial metafunction is somewhat esoteric. To show
how the type computation can be put to work, let’s examine a simple example.
The following code produces an array containing all possible permutations of
another array:

// Can’t return an array in C++, so we need this wrapper

template <class T>

struct wrapper

{

T x;

};

// Return an array of the N! permutations of x

template <class T>

wrapper<typename permutation_holder<T>::type>

all_permutations(T const& in)

{

wrapper<typename permutation_holder<T>::type> result;

// Copy the unpermuted array to the first result element

unsigned const N = sizeof(T)/sizeof(**result.x);

std::copy(&*in, &*in + N, result.x[0]);

// Enumerate the permutations

unsigned const result_size = sizeof(result.x)/sizeof(T);

for (T* dst = result.x + 1; dst != result.x + result_size; ++dst)

{

T* src = dst - 1;

std::copy(*src, *src + N, *dst);

std::next_permutation(*dst, *dst + N);

}

return result;

}

The runtime definition offactorial would be useless inall permutations

above, since in C++ the sizes of array members must be computed at compile-
time. However, there are alternative approaches; how could we avoid metapro-
gramming, and what would the consequences be?
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1 We could write programs to interpret the metadata directly. In our fac-
torial example, the array size could have been a runtime quantity; then
we’d have been able to use the straightforward factorial function. How-
ever, that would imply the use of dynamic allocation, which is often
expensive.

To carry this further, YACC might be rewritten to accept a pointer-to-
function returning tokens from the stream to be parsed, and a string con-
taining the grammar description. This approach, however, would im-
pose unacceptable runtime costs for most applications: either the parser
would have to treat the grammar nondeterministically, exploring the
grammar for each parse, or it would have to begin by replicating at
runtime the substantial table-generation and optimization work of the
existing YACC for each input grammar.

2 We could replace the compile-time computation with our own analy-
sis. After all, the size of arrays passed toall permutations are always
known at compile-time, and thus can be known to its user. We could ask
the user to supply the result type explicitly:

template <typename Result, typename T>

Result

all_permutations(T const& input);

The costs to this approach are obvious: we give up expressivity (by re-
quiring the user to explicitly specify implementation details), and cor-
rectness (by allowing the user to specify them incorrectly). Anyone who
has had to write parser tables by hand will tell you that the impracticality
of this approach is the very reason YACC’s existence.

In a language such as C++, where the metadata can be expressed in the
same language as the rest of the user’s program, expressivity is further
enhanced: the user can invoke metaprograms directly, without learning
a foreign syntax or interrupting the flow of his code.

So, the motivation for metaprogramming comes down to the combination
of three factors: efficiency, expressivity, and correctness. While in classical
programming there is always a tension between expressivity and correctness
on one hand and efficiency on the other, in the metaprogramming world we
wield new power: can move the computation required for expressivity from
runtime to compile-time.

1.4. Why a Metaprogramming Library?
One might just as well ask why we need any generic library:
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Quality. Code that is appropriate for a general-purpose library is usually
incidental to the purpose of its users. To a library developer, it is the cen-
tral mission. On average, the containers and algorithms provided by any
given C++ standard library implementation are more-flexible and better-
implemented than the project-specific implementations which abound,
because library development was treated as an end in itself rather than
a task incidental to the development of some other application. With
a centralized implementation for any given function, optimizations and
improvements are more likely to have been applied.

Re-use. More important even than the re-use of code which all libraries
provide, a well-designed generic library establishes aframework of con-
cepts and idiomswhich establish a reusable mental model for approach-
ing problems. Just as the C++ Standard Template Library gave us iter-
ator concepts and a function object protocol, the Boost Metaprogram-
ming Library provides type-iterators and meta-function class protocol.
A well-considered framework of idioms saves the metaprogrammer from
considering irrelevant implementation details and allows her to concen-
trate on the problem at hand.

Portability. A good library can smooth over the ugly realities of plat-
form differences. While in theory a metaprogramming library is fully
generic and shouldn’t be concerned with these issues, in practice, sup-
port for templates remains inconsistent even four years after standardiza-
tion. This should perhaps not be surprising: C++ templates are the lan-
guage’s furthest-reaching and most complicated feature, which largely
accounts for the power of metaprogramming in C++.

Fun. Repeating the same idioms over and over istedious. It makes pro-
grammers tired and reduces productivity. Furthermore, when program-
mers get bored they get sloppy, and buggy code is even more costly than
slowly-written code. Often the most useful libraries are simply patterns
that have been “plucked” by an astute programmer from a sea of repeti-
tion. The MPL helps to reduce boredom by eliminating the need for the
most commonly-repeated boilerplate coding patterns.

As you can see, the Boost Metaprogramming Library’s development is mo-
tivated primarily by the same practical, real-world considerations that justify
the development of any other library. Perhaps this is an indication that template
metaprogramming is finally ready to leave the realm of the esoteric and enter
the lingua franca of every day programmers.
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1.5. What about portability?
Although the MPL aims to reduce the user’s need to be concerned with is-

sues of nonstandard C++ implementations, some concessions are inevitable.
For example, the current implementation of thelambda facility does not work
on compilers which lack either support for template partial specialization or
for template template parameters.1 Another concession which may not be ap-
parent at first is the need for theapply1 ...applyN templates. On most com-
pilers, applyN<F,T1,T2...TN> (for example) is derived fromF::template

apply<T1,T2...TN> : it is nearly a synonym, and one might well wonder
whether it is even worth providingapply as a library facility since the lan-
guage construct only costs one additional keyword. On one compiler, how-
ever, this construct causes an internal compiler error and must be replaced
with a workaround so odious that it would be unreasonable to expect even an
expert to find it.2 The library hides all this nastiness within its implementation
of applyN , but anyone writing portable metaprograms is required to use the
library instead of taking what might be considered the more obvious approach.

2. Basic usage (What can I do with mpl?)

2.1. Conditional type selection
Conditional type selection is the simplest basic construct of C++ template

metaprogramming. Veldhuizen? was the first to show how to implement it,
and Czarnecki and Eisenecker? first presented it as a standalone library prim-
itive. The Boost Metaprogramming Library defines the corresponding facility
as follows:

// definition

template<

typename Condition

, typename T1

, typename T2

>

struct select_if

{

typedef implementation-defined type;

};

// usage/semantics

1We believe that a workaround is possible, but that it would impose some additional restrictions on the
way users must represent metafunctions. The fact remains that without both features, metaprogramming
expressivity is somewhat reduced.
2In fact, the workaround isn’t even legal C++ but it is accepted by the compiler in question.
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typedef mpl::select_if<mpl::true_c,char,long>::type t1;

typedef mpl::select_if<mpl::false_c,char,long>::type t2;

BOOST_MPL_ASSERT_IS_SAME(t1, char);

BOOST_MPL_ASSERT_IS_SAME(t2, long);

The construct is important because template metaprograms often contain a
lot of decision-making code, and, as we will show, spelling it manually ev-
ery time via (partial) class template specialization quickly becomes impracti-
cal. The template also important from the point of encapsulating the compiler
workarounds (for example, not all C++ compilers support partial template spe-
cialization).

2.1.1 Delayed Evaluation. The way C++ template instantiation
mechanism works imposes some subtle limitations on applicability of the type
selection primitive, compared to a manually implemented equivalent of the
selection code.

For example, suppose we are implementing apointed type traits template
such aspointed type<T>::type instantiated for aT that is either a plain
pointer (U*), std::auto ptr<U> , or any of theboost smart pointers, e.g.boost::-

scoped ptr<U> , will give you the pointed type (U):

BOOST_MPL_ASSERT_IS_SAME(pointed_type<my*>::type, my);

BOOST_MPL_ASSERT_IS_SAME(pointed_type< std::auto_ptr<my> >::type, my);

BOOST_MPL_ASSERT_IS_SAME(pointed_type< boost::scoped_ptr<my> >::type, my);

Unfortunately, the straightforward application ofselect if to this problem
does not work:3

template< typename T >

struct pointed_type

: mpl::select_if<

boost::is_pointer<T>

, typename boost::remove_pointer<T>::type

, typename T::element_type // #1

>

{

};

3Although it would be easy to implementpointed type using partial specialization to distinguish
the case whereT is a pointer,select if is likely to be the right tool for dealing with more–complex
conditionals. For the purposes of exposition, please suspend disbelief!
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// the following code causes compilation error in line #1:

// name followed by "::" must be a class or namespace name

typedef pointed_type<char*>::type result;

Clearly, the expressiontypename T::element type is not valid in case ofT
== char* , and that’s what the compiler is complaining about. Implementing
the selection code manually solves the problem:

namespace aux {

// general case

template<typename T, bool is_pointer = false>

struct select_pointed_type

{

typedef typename T::element_type type;

};

// specialization for plain pointers

template<typename T>

struct select_pointed_type<T,true>

{

typedef typename boost::remove_pointer<T>::type type;

};

}

template< typename T >

struct pointed_type

: aux::select_pointed_type<

T, boost::is_pointer<T>::value

>

{

};

But this quickly becomes awkward if needs to be done repeatedly, and this
awkwardness is compounded when partial specialization is not available. We
can try to work around the problem as follows:

namespace aux {

template< typename T >

struct element_type

{

typedef typename T::element_type type;

};

}
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template< typename T >

struct pointed_type

{

typedef typename mpl::select_if<

boost::is_pointer<T>

, typename boost::remove_pointer<T>::type

, typename aux::element_type<T>::type

>::type type;

};

but this doesn’t work either - the access to theelement type<T> ’s nested
type member still forces the compiler to instantiateelement type<T> with T

== char* , and that instantiation is of course invalid. Also, although in our
case this does not lead to a compile error, theboost::remove pointer<T>

template gets always instantiated as well, and for the same reason (because
we are accessing it’s nestedtype member). Such unnecessary instantiation
that is not fatal from compiler’s point of view may or may be not a problem,
depending on the “weight” of the template (how much the instantiation taxes
the compiler), but a general rule of thumb would be to avoid such code.

Returning to our error, to make the above code compile, we need to fac-
tor the act of “asking”aux::element type<T> of its nestedtype out of the
select if invocation. The fact that bothboost::remove pointer<T> trait
template andaux::element type<T> use the same naming convention for
their result types makes the refactoring easier:

template< typename T >

struct pointed_type

{

private:

typedef typename mpl::select_if<

boost::is_pointer<T>

, boost::remove_pointer<T>

, aux::element_type<T>

>::type func_;

public:

typedef typename func_::type type;

};

Now the compiler has no reasons instantiate bothboost::remove pointer<T>

andaux::element type<T> even although they are used as actual parameters
to theselect if template (and is guaranteed not to do so), so we are guaran-
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teed to get away withaux::element type<char*> as far as it won’t end up
being selected asfunc .

The above technique is so common in template metaprograms, that it even
make sense to facilitate the selection of nestedtype member by introducing a
high level equivalent toselect if - the one that will dofunc ::type operation
(that is called [nullary] function class application) as a part of its invocation.
The MPL provides such template - it’s calledapply if . Using it, we can re-
write the above code as simple as:

template< typename T >

struct pointed_type

{

typedef typename mpl::apply_if<

boost::is_pointer<T>

, boost::remove_pointer<T>

, aux::element_type<T>

>::type type;

};

To make our techniques review complete, let’s consider a slightly different
example - suppose we want to define a high-level wrapper aroundboost::remove -

pointer traits template, which will strip the pointer qualification conditionally.
We will call it remove pointer if :

template<

typename Condition

, typename T

>

struct remove_pointer_if

{

typedef typename mpl::select_if<

Condition

, typename boost::remove_pointer<T>::type

, T

>::type type;

};

Now the above works the first time, but it suffers from the problem we men-
tioned earlier -boost::remove pointer<T> gets instantiated even if its result
is never used. In the metaprogramming world compilation time is an impor-
tant resource?, and it is wasted by unnecessary template instantiations. We’ve
just seen how to deal with the problem in when both arguments toselect if

are the results of nullary function class applications, but in this example one
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of the arguments (T) is just a simple type, so the refactoring just doesn’t seem
possible. An easiest way out of this situation would be to pass toselect if

a real nullary function instead ofT, - the one that returnsT on its invocation.
The Boost Metaprogramming Libraryprovides a simple way to do it - we just
substitutempl::identity<T> andmpl::apply if for T andmpl::select if :

template<

typename Condition

, typename T

>

struct remove_pointer_if

{

typedef typename mpl::apply_if<

Condition

, boost::remove_pointer<T>

, mpl::identity<T>

>::type type;

};

Which gives us exactly what we wanted.

2.2. The Form of Metafunctions
In C++ the basic underlying language construct which allows parameter-

ized compile-time computation is theclass template. A bare class template is
the simplest possible model we could choose for metafunctions: it can take
types and/or non-type arguments as actual template parameters and instantia-
tion “returns” a new type. For example, the following produces a type derived
from its arguments:

template<class N1, class N2>

struct derive : N1, N2

{

};

However, this model is far too limiting: it restricts the metafunction result
not only to class types, but to instantiations of a given class template, to say
nothing of the fact that every metafunction invocation introduces an additional
level of template nesting. While that might be acceptable for this particular
metafunction any model which prevented us from “returning”, say,int is ob-
viously not general enough. To meet this basic requirement, we must rely on a
nested type to provide our return value:
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template<class N1, class N2>

struct derive

{

struct type : N1, N2 {};

};

// silly specialization, but demonstrates ‘‘returning’’ int.

template<>

struct derive<void,void>

{

typedef int type;

};

Veldhuizen? was first to talk about class templates of this form as “compile-
time functions”, and? have introduced “template metafunction” as an equiva-
lent term (they also use the simpler term “metafunction” as do we).

2.2.1 Higher-Order Metafunctions. While syntactically sim-
ple, the simple template metafunction form does not always interact optimally
with the rest of C++. In particular, the simple metafunction form makes it un-
neccesarily awkward and tedious to define and work with higher-order meta-
functions (metafunctions that operate on other metafunctions). In order to pass
a simple metafunction to another template, we need to usetemplate template
parameters:

// Returns F(T1,F(T2,T3))

template<template<typename>class F, class T1, class T2, class T3>

struct apply_twice

{

typedef typename F<

T1

, typename F<T2,T3>::type

>::type type;

};

// A new metafunction returning a type derived from T1, T2, and T3

template <class T1, class T2, class T3>

struct derive3

: apply_twice<derive,T1,T2,T3>

{};
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This looks different, but it seems to work.4 However, things begin to break
down noticeably when we want to “return” a metafunction from our metafunc-
tion:

// Returns G s.t. G(T1,T2,T3) == F(T1,F(T2,T3))

template<template<typename>class F>

struct compose_self

{

template <class T1, class T2, class T3>

struct type : apply_twice<F,T1,T2,T3> {};

};

The first and most obvious problem is that the result of applyingcompose -

self is not itself a type, but a template, so it can’t be passed in the usual
ways to other metafunctions. A more subtle issue, however, is that the meta-
function “returned” is not exactly what we intended. Although it acts just
like apply twice , it differs in one important respect: its identity. In the C++
type system,compose self<F>::template type<T,U,V> is not a synonym
for apply twice<F,T,U,V> , and any metaprogram which compared metafunc-
tions would discover that fact.

Because C++ makes a strict distinction between type and class template
template parameters, reliance on simple metafunctions creates a “wall” be-
tween metafunctions and metadata, relegating metafunctions to the status of
second-class citizens. For example, recalling our introduction to type sequences,
there’s no way to make acons list of metafunctions:

typedef cons<derive, cons<derive3, nil> > derive_functions; // error!

We might consider redefining ourcons cell so we can passderive as the
head element:

template <

template<template<class T,class U> class F

, class Tail

> struct cons;

However, now we have another problem: C++ templates are polymorphic
with respect to their type arguments, but not with respect to template template

4In fact it’s already broken:apply twice doesn’t even fit the metafunction concept since it requires a
template (rather than a type) as its first parameter, which breaks the metafunction protocol!
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parameters. The arity (number of parameters) of any template template pa-
rameter is strictly enforced, so westill can’t embedderive3 in a cons list.
Moreover, polymorphismbetweentypes and metafunctions is not supported
(the compiler expects one or the other), and as we’ve seen, the syntax and se-
mantics of “returned” metafunctions is different from that of returned types.
Trying to accomplish everything with the simple template metafunction form
would seriously limit the applicability of higher-order metafunctionsand would
have an overall negative effect on the both conceptual and implementation clar-
ity, simplicity and size of the library.

2.2.2 Metafunction Classes. Fortunately, the truism that “there
is no problem in software which can’t be solved by adding yet another level of
indirection”5 applies here. To elevate metafunctions to the status of first-class
objects, the MPL introduces the concept of a “metafunction class”:

// metafunction class form of derive

struct derive

{

template<class N1, class N2>

struct apply

{

struct type : N1, N2 {};

};

};

This form should look familiar to anyone acquainted with function objects
in STL, with the nestedapply template taking the same role as the runtime
function-call operator. In fact, compile-time metafunction classes have the
same relationship to metafunctions that runtime function objects have to func-
tions:

// function form of add

template <class T> T add(T x, T y) { return x + y; }

// function object form of add

struct add

{

template<class T>

T operator()(T x, T y) { return x + y; }

};

5Andrew Koening calls this “The Fundamental Theorem of Software Engineering”
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2.2.3 One Size Fits All?. The metafunction class form solves all
the problems with ordinary template metafunctions mentioned earlier: since it
is a regular class, it can be placed in compile-time metadata sequences, and
manipulated by other metafunctions using the same protocols as for any other
metadata. We thereby avoid the code-duplication needed to provide versions of
each library component to operate on ordinary metadata and on metafunctions
with each distinct supported arity.

On the other hand, it seems that accepting metafunction classes asthe rep-
resentation for compile-time function entities imposes code duplication danger
as well: if the library’s own primitives, algorithms, etc. are represented as class
templates, that means that you either cannot reuse these algorithms in the con-
text of higher-order functions, or you have to duplicate all algorithms in the
second form, so, for instance, there would be two versions offind :

// user-friendly form

template<

typename Sequence

, typename T

>

struct find

{

typedef /* ... */ type;

};

// "function class" form

struct find_func

{

template< typename Sequence, typename T >

struct apply

{

typedef /* ... */ type;

};

};

Of course, the third option is to eliminate “user-friendly form” completely
so one would always have to write:

typedef mpl::find::apply<list,long>::type iter;

// or, if you prefer,

// typedef mpl::apply< mpl::find,list,long >::type iter;

instead of
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typedef mpl::find<list,long>::type iter;

That too would hurt usability, considering that the direct invocations of li-
brary’s algorithms are far more often-used than passing algorithms as argu-
ments to another algorithms/functions.

2.2.4 From Metafunction to Metafunction Class. The MPL’s
answer to this dilemma is lambda expressions. Lambda is the mechanism
that enables the library to curry metafunctions and convert them into func-
tion classes, so when you want to pass thefind algorithm as an argument to a
higher-order function, you just write:

typedef mpl::apply< my f, mpl::find< 1, 2> >::type result;

Where 1 and 2 are placeholders for the first and second arguments to the re-
sulting metafunction class. This preserves the intuitive syntax below for when
the user wants to usefind directly in her code:

typedef mpl::find<list,long>::type iter;

Metafunctions are important by encapsulating an operation into compile-
time invocable entity, they give you a possibility to defer its execution. You
can store the entity, pass it around, and invoke the operation at any time you
need.

2.3. Sequences, algorithms, and iterators
Compile-time iteration over a sequence (of types) is one of the basic con-

cept of template metaprogramming. Difference in types of objects being ma-
nipulated is the most common point of variability of similar but not identical
code/design, and such designs are the direct target for some metaprogramming.
Templates in their original usage were intended to be used to solve this exact
problem, (std::vector), but without predefined abstractions/constructs for ma-
nipulating/iteratingsequencesof types instead of standalone types, and without
developed (known) techniques for emulating this constructs using the current
language facilities, they effect on helping high-level metaprogramming happen
has been limited.

Czarnecki and Eisenecker? were the first to introduce the compile-time
sequences of types and some simple algorithms on them, although the idea of
representation common data structures like trees, lists, etc. at compile time
using class template composition has been around for a while (for example,
most of the expression template libraries build such trees as a part of their
expression “parsing” process?). ? used list of types and some algorithms on
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them to implement several design patterns; the accompanying code is known
as the Loki library.

2.3.1 Algorithms Operate on Sequences. Most of algorithms
in Boost Metaprogramming Library operates on sequences. For example, search-
ing type in a list looks like this:

typedef mpl::list< char,short,int,long,float,double > types;

typedef mpl::find< types,long >::type iter;

Here,find accepts two parameters - a sequence to search (types ), the type
to search for (long ), and returns an iteratoriter pointing to the first element of
the sequence such thatiter::type is identical tolong ; if no such element ex-
ists, iter is identical toend<types>::type . Basically, this is how one would
search for a value instd::list or std::vector , except thatmpl::find ac-
cepts the sequence as a single parameter, whilestd::find takes two iterators.
Everything else is pretty much the same - the names are the same, the seman-
tics is very close, there are iterators, and you can search not only by type, but
also using a predicate:

typedef mpl::find_if< types,boost::is_float<_1> >::type iter;

This conceptual/syntactical similarity with the STL is not coincidental. Reusing
the conceptual framework of STL in compile-time world allows us to apply fa-
miliar and sound approaches for dealing with sequential data structures. The
algorithms and idioms which programmers already know from STL can be ap-
plied again at compile-time. We consider this to be one of the greatest strengths
that distinguishes the library from earlier attempts to build a template metapro-
gramming library.

2.3.2 Sequence Concepts. In thefind example above we searched
for a type in the sequence built using thempl::list template, butlist is not
the only sequence that the library provides you with. Neither ismpl::find

or any other algorithm hard-coded to work only withlist sequences.list

is just one model of MPL’s ForwardSequence concept, andfind works with
anything that satisfies this concept’s requirements. The hierarchy of sequence
concepts in MPL is quite simple - a Sequence is any compile-time entity for
whichbegin<> andend<> produce iterators to the range of its elements; a For-
wardSequence is a sequence whose iterators satisfy ForwardIterator require-
ments, a BidirectionalSequence is a ForwardSequence whose iterators satisfy
BidirectionalIterator requirements, and, finally, RandomAccessSequence is a
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BidirectionalSequence whose iterators satisfy RandomAccessIterator require-
ments.

Decoupling algorithms from particular sequence implementation s (through
iterators) allows a metaprogrammer to create her own sequence types and to
retain the rest of the library at her disposal. For example, you can define a
tiny list for dealing with sequences of 3 types as follows:

template< typename TinyList, long Pos >

struct tiny_list_item;

template< typename TinyList, long Pos >

struct tiny_list_iterator

{

typedef typename tiny_list_item<TinyList,Pos>::type type;

typedef tiny_list_iterator<TinyList, Pos-1> prior;

typedef tiny_list_iterator<TinyList, Pos+1> next;

};

template< typename T0, typename T1, typename T2 >

struct tiny_list

{

typedef tiny_list_iterator<tiny_list, 0> begin;

typedef tiny_list_iterator<tiny_list, 3> end;

typedef T0 type0;

typedef T1 type1;

typedef T2 type2;

};

template< typename TinyList >

struct tiny_list_item<TinyList,0>

{ typedef typename TinyList::type0 type; };

template< typename TinyList >

struct tiny_list_item<TinyList,1>

{ typedef typename TinyList::type1 type; };

template< typename TinyList >

struct tiny_list_item<TinyList,2>

{ typedef typename TinyList::type2 type; };

and then use it with any of the library algorithms as if it wasmpl::list :

typedef tiny_list< char,short,int > types;

typedef mpl::transform<
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types

, boost::add_pointer

>::type pointers;

Note thattiny list is a model of BidirectionalSequence (it would be Ran-
domAccess if we addedadvance member totiny list iterator :

template< typename TinyList, long Pos >

struct tiny_list_iterator

{

typedef typename tiny_list_item<TinyList,Pos>::type type;

typedef tiny_list_iterator<TinyList, Pos-1> prior;

typedef tiny_list_iterator<TinyList, Pos+1> next;

template< typename N > struct advance

{

typedef tiny_list_iterator<

TinyList

, Pos + N::value

> type;

};

};

).
While the tiny list itself might be not that interesting - after all, it can

hold only 3 elements, if the technique above can be automated so we would
be able to define not so tiny sequence - with 5, 10, 20, etc. number of ele-
ments, when it would be very valuable (random access is almost as important at
compile-time as it is at run-time - for example searching something in a sorted
random-access sequence usinglower bound can be much faster than doing the
same operation on forward-access onlylist ). External code generation is one
option here, but there is also a solution within the language, although it’s not
a template metaprogramming, but preprocessor metaprogramming?. In fact,
mpl::vector - a fixed-size type sequence that provides random-access itera-
tors - is implemented very like the abovetiny list .

2.3.3 Why Library-Provided Iteration is Important. So,
the library provides you with almost complete compile-time equivalent of STL
framework. Does it help you to solve you metaprogramming tasks? Let’s re-
turn to ourlargest example to see if we can rewrite it in a better way with
what mpl has to offer. Well, actually there is not much to look at, because
implementation of it with MPL is a one-liner (we’ll spread it out here for read-
ability):
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template< typename Sequence >

struct largest

{

typedef typename mpl::max_element<

Sequence

, mpl::less<

mpl::size_of<_1>

, mpl::size_of<_2>

>

>::type type;

};

No more termination conditions with a tricky pattern matching, no more
partial specializations, and even more importantly, it’sobviouswhat the above
code does - even although it’s all templates - something that you cannot say
about the original version.

2.3.4 iter fold as the main iteration algorithm. For the
purpose of examining a little bit more of the library’s internal structure, let’s
look at howmax element from the above example is implemented. One might
expect thatnow we will again see all these awkward partial specializations,
esoteric pattern matching, etc. Well, let’s see:

namespace aux {

template< typename Predicate >

struct select_max

{

template< typename OldIterator, typename Iterator >

struct apply

{

typedef typename mpl::apply<

Predicate

, typename OldIterator::type

, typename Iterator::type

>::type condition_;

typedef typename mpl::select_if<

condition_

, Iterator

, OldIterator

>::type type;

};

};

} // namespace aux
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template<

typename Sequence

, typename Predicate

>

struct max_element

{

typedef typename mpl::iter_fold<

Sequence

, typename mpl::begin<Sequence>::type

, aux::select_max<Predicate>

>::type type;

};

The first thing to notice here is that this algorithm is implemented in terms
of another one:iter fold . In fact, this is probably the most important point
of the example, because nearly all other generic sequence algorithms in the
library are implemented in terms ofiter fold . If a user ever should need to
implement her own sequence algorithm, she’ll almost certainly be able to do
it using this primitive, which means she won’t have to resort to implement-
ing hand-crafted iteration, pattern matching of special cases for loop termina-
tion, or workarounds for lack of partial specialization. It also means that her
algorithm will automatically benefit any optimizations the library has imple-
mented, (e.g. recursion unrolling), and that it will work with any sequence that
is a model of ForwardSequence, becauseiter fold does not require any more
of its sequence argument.

iter fold is basically a compile-time equivalent of thefold or reducefunc-
tions that comprise the basic and well-known primitives of many functional
programming languages. An analogy more familiar to a C++ programmer
would bestd::accumulate algorithm from the C++ standard library. How-
ever, iter fold is designed to take advantage of the natural characteristics
of recursive traversal: it acceptstwo metafunction class arguments, the first of
which is applied to the state “on the way in” and the second of which is applied
“on the way out”.

The interface toiter fold is defined inmpl as follows:

template<

typename Sequence

, typename InitialState

, typename ForwardOp

, typename BackwardOp = identity<_1>

>

struct iter_fold

{
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typedef ... type;

};

The algorithm “returns” the result of two-way successive applications of bi-
naryForwardOp andBackwardOp operations to iterators in range [begin<Sequence>::type ,
end<Sequence>::type ) and previous result of an operation; theInitialState

is logically placed before the sequence and included in the forward traversal.
The resulttype is identical toInitialState if the sequence is empty. Of
course the MPL also provides higher-levelfold andfold reverse algorithms
which wrapiter fold to accommodate its most common usage patterns.

2.3.5 Sequences of Numbers. What we’ve seen so far were se-
quences (and algorithms on sequences) of types. It’s very much possible and
easy to manipulate values using the library as well. The only thing to remem-
ber is that in C++ class template non-type template parameters give us one
more example of non-polymorphic behavior. In other words, if you declared a
metafunction to take a non-type template parameter, e.g.long, it’s not possible
to pass anything besides compile-time integral constants to it:

template< long N1, long N2 >

struct equal_to

{

static bool const value = (N1 == N2);

};

equal_to<5,5>::value; // ok

equal_to<int,int>::value; // error!

And of course this doesn’t work the other way around either:

typedef mpl::list<1,2,3,4,5> numbers; // error!

While this may be an obvious limitation, it imposes yet another dilemma on
the library design - on one hand, we don’t want to restrict users to type ma-
nipulations only, and on another hand, full support for integral manipulations
would require at least duplication of most of the library facilities (ideally, if
going this route, all the templates should be re-implemented for every integral
type - char , int , short , long , etc.) - the same situation as we would have
if we had chosen to represent metafunctions as ordinary class templates. The
solution for this issue is the same as well - we represent integral values by
wrapping them in types, so, for example, to create a list of numbers you write:
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typedef mpl::list<

mpl::int_c<1>

, mpl::int_c<2>

, mpl::int_c<3>

, mpl::int_c<4>

, mpl::int_c<5>

> numbers;

Wrapping integral constants into types to make them first-class citizens is
important well inside metaprograms, where you often don’t know (and don’t
care) if the metafunctions you are using operate on types, integral values,
other metafunctions or something else, like fixed-point or rational numbers
(mpl::fixed c andmpl::rational c).

But from user’s perspective, the above example is much more verbose than
the shorter one, the one that was incorrect. So, for the convenience purposes,
the library does provide users with a template that takes non-type template
parameters, but allows a more compact notation:

typedef mpl::list_c<long,1,2,3,4,5> numbers;

There is a similarvector counterpart as well:

typedef mpl::vector_c<long,1,2,3,4,5> numbers;

2.3.6 Why External Functions for all Algorithms.

1 while the nested functions notation in some cases is less verbose,

typedef mpl::list<char,short,int,long> types;

typedef mpl::select_if<

types::empty

, long

, types::back

>::type t;

it is also less generic/more intrusive; requiring a sequence class to im-
plementsize , empty , at , etc. algorithms as members is often unnec-
essary and over restrictive. In many cases the default implementations
provided by the library are sufficient. Currently the only requirement
that a “foreign” sequence should conform to in order to be used with the
library algorithms is to implement externalbegin /end metafunctions;
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you don’t have to modify your sequence code; with the requirement to
provide these as nested functions that wouldn’t be the case anymore.

2 if a nested function has at least one argument, and it’s invoked on a se-
quence that is a template parameter, or depends on a template parameter,
the notation actually becomes more verbose, e.g.

struct my_func

{

template< typename Sequence, typename N > struct apply

{

// invoking ’at’ nested metafunction on a Sequence class

typedef typename Sequence::template at<N>::type type;

};

};

comparing to the current

struct my_func

{

template< typename Sequence, typename N > struct apply

{

typedef typename mpl::at< N,Sequence >::type type;

};

};

3 placing functions inside of a sequence class makes impossible to pass
them around as predicates/function classes:

typedef mpl::list< seq1,seq2,seq3 > sequences; // list of sequences

// find first non-empty sequence

typedef mpl::find_if< sequences, mpl::size<_1> >::type itor;

instead, you have to write an explicit predicate for every such case,

struct size_pred

{

template< typename Sequence > struct apply

{

typedef typename Sequence::size type;

};
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};

// find first non-empty sequence

typedef mpl::find_if< sequences,size_pred >::type itor;

2.3.7 A Variety of Sequences. Previous efforts to provide gener-
alized metaprogramming facilities for C++ have always concentrated oncons -
style type lists and a few core algorithms like ’size’ and ’at’ which are tied
to the specific sequence implementation. Such systems have an elegant sim-
plicity reminiscent of the analogous functionality in pure functional Lisp. It
is much more time-consuming to implement even a basic set of the sequence
algorithms provided by equivalent run-time libraries (STL in particular), but
if we have learned anything from the STL it is that tying those algorithms’
implementations to a specific sequence implementation is a misguided effort!

The truth is that there is no single “best” type sequence implementation for
the same reasons that there will never be a single “best” runtime sequence
implementation. Furthermore, there arealreadyquite a number of type list
implementations in use today, and just as the STL algorithms can operate on
sequences which don’t come from STL containers, so the MPL algorithms are
designed to work with foreign type sequences.

It may be an eye-opening fact for some that type lists are not the only useful
compile-time sequence. Again, the need for a variety of compile-time con-
tainers arises for the same reasons that we have lists, vectors, deques, and
sets in the C++ standard library - different containers have different functional
and performance characteristics which determine not only applicability and
efficiency of particular algorithms, but also the expressiveness or verbosity of
the code that uses them. While runtime performance is not an issue for C++
metaprograms, compilation speed is often a significant bottleneck to advanced
C++ software development?.

The Boost Metaprogramming Library provides four built-in sequences:list ,
list c (really just alist of value wrappers),vector , a randomly–accessible
sequence of fixed maximum size, andrange c, a randomly–accessible se-
quence of consecutive integral values. More important, however, is its ability to
adapt to arbitrary sequence types. The only core operations that a sequence is
required to provide in order to be used with the library algorithms arebegin<>

andend<> metafunctions which “return” iterators into to the sequence. As in
the STL it is the iterators which are used to implement most of the general
purpose sequence algorithms the library provides. Also as in STL, algorithm
specialization is used to take advantage of implementation knowledge about
particular sequences: many of the “basic” sequence operations such asback<> ,
front<> size<> andat<> are specialized on sequence type to provide a more
efficient implementation than the fully generic version.
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2.3.8 Loop unrolling. Almost coincidentally, loop unrolling can
be as important to compile-time iterative algorithms as it is to runtime algo-
rithms. To see why, one must first remember that all “loops” in C++ metapro-
grams are in fact implemented with recursion, and that the depth of template
instantiations can be a valuable resource in a compiler implementation. In fact,
Annex B of the C++ standardrecommendsa minimum depth of 17 recursively
nested template instantiations, but this is far too low for many serious metapro-
grams some of which easily exceed the hard-coded instantiation limits of some
otherwise excellent compilers. To see how this works in action, let’s examine
a straightforward implementation of thefold metafunction, which combines
some algorithm state with each element of a sequence:

// Unspecialized version combines the initial state and first element

// and recurses to process the rest

template<class Start, class Finish, class State, class BinaryFunction>

struct fold

: fold<typename Start::next, Finish

, apply<BinaryFunction,State,typename Start::type>::type

, BinaryFunction>

{

};

// Specialization for loop termination

template<class Finish, class State, class BinaryFunction>

struct fold<Finish,Finish,State,BinaryFunction>

{

typedef State type;

};

Although simple and elegant, this implementation will always incur at least
as many levels of recursive template instantiation as there are elements in the
input sequence.6 The library addresses this problem by explicitly “unrolling”
the recursion. To apply the technique to ourfold example, we begin by fac-
toring out a single step of the algorithm. Ourfold step metafunction has two
results:type (the next state), anditerator (the next sequence position).

template <class BinaryFunction, class State, class Start, class Finish>

struct fold_step

{

typedef typename

6It could be much more, depending on the complexity of theapply<...> expression, whose depth is
added to the overall recursion depth.
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apply<BinaryFunction,State,typename Start::type>::type

type;

typedef typename Start::next iterator;

};

As with our main algorithm implementation, we specialize for the loop ter-
mination condition so that the step becomes a no-op:

template <class BinaryFunction, class State, class Finish>

struct fold_step<BinaryFunction,State,Finish,Finish>

{

typedef State type;

typedef Finish iterator;

};

Now we can now reducefold ’s instantiation depth by any constant factor
N simply by inserting N invocations offold step . Here we’ve chosen a factor
of 4:

template<

typename Start

, typename Finish

, typename State

, typename BinaryFunction

>

struct fold

{

private:

typedef fold_step<

BinaryFunction,State,Start,Finish> next1;

typedef fold_step<

BinaryFunction,typename next1::type

, typename next1::iterator,Finish> next2;

typedef fold_step<

BinaryFunction,typename next2::type

, typename next2::iterator,Finish> next3;

typedef fold_step<

BinaryFunction,typename next3::type

, typename next3::iterator,Finish> next4;

typedef fold<
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typename next4::iterator

, Finish

, typename next4::type

, BinaryFunction

> recursion;

public:

typedef typename recursion::type type;

};

The Boost Metaprogramming Library applies this unrolling technique across
all algorithms with an unrolling factor tuned according to the demands of the
C++ implementation in use, and with an option for the user to override the
value.7 This fact enables users to push beyond the metaprogramming lim-
its they would usually encounter with more naive algorithm implementations.
Experiments also show a small increase in metaprogram instantiation speed on
some compilers when loop unrolling is used.

2.4. Code generation facilities
There are cases, especially in domain of numeric computations, then you

want make some part of calculations at compile-time, and then pass the results
to a run-time part of the program for further processing. For example, suppose
you’ve implemented a complex compile-time algorithm that works with fixed-
point arithmetics:

// fixed-point algorithm input

typedef mpl::vector<

mpl::fixed_c<-1,2345678>

, mpl::fixed_c<9,0001>

// ..

, mpl::fixed_c<3,14159>

> input_data;

/*

complex compile-time algorithm

*/

typedef /*...*/ result_data;

7This implementation detail is made relatively painless through heavy reliance on the Boost Preprocessor
Library, so only one copy of the code needs to be maintained.
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Suppose theresult data here is a sequence ofmpl::fixed c types that
keeps the results of your algorithm, and now you want to feed that result to
run-time part of the algorithm. Withboost::mpl you can do it this way:

namespace aux {

struct push_back

{

template< typename T > struct apply

{

template< typename C > void execute(C& c)

{

// in our case T() == fixed_c() == fixed_c().operator()()

c.push_back(T());

}

};

};

}

double my_algorithm()

{

// passing the results to the run-time part of the program

std::vector<double> results;

results.reserve(mpl::size<result_data>::value);

mpl::for_each<result_data, aux::push_back>::execute(results);

// ...

}

for each<...>::execute call there is what actually transfers the compile-
time result data into run-timestd::vector<double> results . The for -

each algorithm is one of the explicit facilities the library provides for run-time
code generation:

template<

typename Sequence

, typename Operation

>

struct for_each

{

template< typename T >

static void execute(T& x)

{

// ...

}
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static void execute()

{

// ...

}

};

The semantics offor each::execute is simple: it iterates over aSequence

and applies theOperation for each elementE of the sequence:

mpl::apply<Operation,E>::execute(x);

Applying this to our example, the

mpl::for_each<result_data, aux::push_back>::execute(results);

line is equivalent to this:

mpl::apply< Operation, mpl::at_c<result_data,0>::type >::execute(results);

mpl::apply< Operation, mpl::at_c<result_data,1>::type >::execute(results);

// ...

mpl::apply< Operation, mpl::at_c<result_data,n>::type >::execute(results);

There are other ways to generate an analogous code, but they are much less
expressive.

3. Lambda facility
Lambda is supposed to allow inline composition of class templates into

“lambda expressions” that are classes and therefore can be passed around as
ordinary function classes, and transformed into metafunction classes before
application using

typedef lambda<expr>::type func;

expression. For example,boost::remove const traits is a class template
(obviously), and a metafunction in MPL terminology. The simplest example
of “inline composition” of it would be something like

typedef boost::remove_const<_1> expr;
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and that forms a so called “lambda expression”, that is neither a function
class, not a metafunction, but can be passed around everywhere because it’s
an ordinary C++ class, and all MPL facilities are polymorphic regarding their
arguments. Now, that lambda expression can betransformedinto a metafunc-
tion class using MPL ‘lambda’ facility:

typedef boost::remove_const<_1> expr;

typedef lambda<expr>::type func;

Now func is an unary metafunction class and can be used as such - in par-
ticular, it can be pass around, and it can be invoked (applied):

typedef apply1<func,int const>::type res;

BOOST_MPL_ASSERT_IS_SAME(res, int);

or even

typedef func::apply<int const>::type res;

BOOST_MPL_ASSERT_IS_SAME(res, int);

Inline composition is very syntactically appealing when you deal with meta-
functions, because it makes the expression obvious:

typedef logical_or< less< size_of<_1>, 16>, boost::is_same<_1,_2> > expr;

typedef lambda<expr>::type func;

And you don’t have to do the last part (typedef lambda<expr>::type

func ) yourself, because all the algorithms do this to any of their metafunc-
tion class operands internally (lambda<T>::type expression applied to a meta-
function class gives back the same metafunction class, so it’s safe to apply the
expression unconditionally).

The alternative way to get an equivalent to the above metafunction class
would be:

typedef bind< make_f2<logical_or>

, bind< make_f2<less>

, bind< make_f1<size_of>, _1 >

, 16

>

, bind< make_f2<boost::is_same>, _1,_2>
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> func;

Or to usecompose * an similar way. Here, we usemake f* ’ templates to
convert metafunction into metafunction classes (and yes, they do require the
template template parameters), and then we combine them usingbind . The
transformation from this form to the above inline lambda expression and visa-
versa is mechanic, and that’s what essentiallytypedef lambda<expr>::type

expression does.
Now, in absence of lambda, MPL enables one to write the above in a little bit

less cumbersome way by fullyspecializingits own metafunctions (algorithms,
primitives, etc.) for the case when all the arguments are replaced by lambda
placeholders in alphabetical order. For example, the originalmpl::less tem-
plate looks like this:

template< typename T0, typename T1 >

struct less

{

typedef bool_c<(T1::value op T2::value)> type;

};

and it’s specialized like this:

template<>

struct less<_1,_2>

{

template< typename T0, typename T1 > struct apply

{

typedef bool_c<(T1::value op T2::value)> type;

};

};

The same is done for everything else in the library that is represented by
top level class template (metafunction), so, with this knowledge, the previous
awkward bind example can be rewritten as:

typedef bind< logical_or<_1,_2>

, bind< less<_1,_2>, size_of<_1>, 16 >

, bind< make_f2<boost::is_same>, _1,_2 >

> func;

Note that you still have to wrapis same into make f2 , because it’s a foreign
template.
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Now, about combining class template metufunctions and metafunction classes
in the single lambda expression - it can be done like this:

struct my_predicate

{

template< typename T1, typename T2 > struct apply

{

//...

};

};

typedef logical_or<

less< size_of<_1>, 16>

, my_predicate // here

> expr;

or, if, for example, you want to bind something to one of it’s arguments (or
change the order of parameters), then either

typedef logical_or<

less< size_of<_1>, 16>

, bind<my_predicate,int,_1>::type // here

> expr;

or

typedef logical_or<

less< size_of<_1>, 16>

, my_predicate::apply<int,_1> // here

> expr;

4. An advanced example - compile-time FSM
generator

Finite state machines (FSM) are an important tool of describing and im-
plementing controlling program behavior?, ?. They also are a good example
of the domain where some metaprogramming can be applied to reduce the
amount of repetitive and boilerplate operations one have to perform in order
to implement these simple mathematical models in code. Below we present a
simple state machine generator that has been implemented using Boost Meta-
programming Libraryfacilities. The generator takes a compile-time automata
description, and turns it into C++code that implements the FSM at run-time.
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Figure 1. Player’s state transition diagram.

The FSM description is basically a combination of states and events + a state
transition table (STT) that ties them all together. The generator walks through
the table and generates the state machine’sprocess event method that is es-
sentially what a FSM is about.

Suppose we want to implement a simple music player using a finite state
machine model. The state transition table for the FSM is shown in Table 1.
The STT format reflects the way one usually describes the behavior of a FSM
in plain English. For example, the first line of the table can be read as follows:
“If the model is in thestopped state, and theplay event is received, then
thedo play transition function is called, and the model goes into theplaying

state”.

Table 1. Player’s state transition table with actions.

State Event Next State Transition Function

stopped playevent playing doplay
playing stopevent stopped dostop
playing pauseevent paused dopause
paused playevent playing doresume
paused stopevent stopped dostop

The transition table provides us with complete formal definition of the target
FSM, and there are several ways to transform that definition into code. For
example, if we define states as members of enumeration type, and events as
classes derived from some baseevent class (they need to be passed to action
functions, and they may contain some event-specific information for an action),

class player

{

public:

// event declarations

struct event;

struct play_event;

struct stop_event;

struct pause_event;

// ‘‘input" function

void process_event(event const&); // throws
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private:

// states

enum state_t { stopped, playing, paused };

// transition functions

void do_play(play_event const&);

void do_stop(stop_event const&);

void do_pause(pause_event const&);

void do_resume(play_event const&);

private:

state_t m_state;

};

then the most straightforward way to derive the FSM implementation from
the above table would be something like this:

void

player::process_event(event const& e)

{

if (m_state == stopped)

{

if (typeid(e) == typeid(play_event))

{

do_play(static_cast<play_event const&>(e));

m_state = playing;

return;

}

}

else if (m_state == playing)

{

if (typeid(e) == typeid(stop_event))

{

do_stop(static_cast<stop_event const&>(e));

m_state = stopped;

return;

}

if (typeid(e) == typeid(pause_event))

{

do_pause(static_cast<pause_event const&>(e));

m_state = paused;

return;

}
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}

else if (m_state == paused)

{

if (typeid(e) == typeid(stop_event))

{

do_stop(static_cast<stop_event const&>(e));

m_state = stopped;

return;

}

if (typeid(e) == typeid(play_event))

{

do_play(static_cast<play_event const&>(e));

m_state = playing;

return;

}

}

else

{

throw logic_error(

boost::format("unknown state: %d")

% static_cast<int>(m_state)

);

}

throw std::logic_error(

"unexpected event: " + typeid(e).name()

);

}

Although there is nothing particularly wrong with implementing a FSM’s
structure using nestedif (or switch-case ) statements, the obvious thing about
this approach is that it doesn’t scale - even for our simple FSM theprocess -

event function is already more than 50 lines long. One way to reduce the
maintenance problems would be to factor bodies of top-levelif statements in
separate event processing functions, one for each state:

void

player::process_event(event const& e)

{

if (m_state == stopped) m_state = process_stopped_state_event(e);

else if (m_state == playing) m_state = process_playing_state_event(e);

else if (m_state == paused) m_state = process_paused_state_event(e);

else

{
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throw logic_error(

boost::format("unknown state: %d")

% static_cast<int>(m_state)

);

}

}

where, for example,process playing state event function would look
like this:

player::state_t

player::process_stopped_state_event(event const& e)

{

if (typeid(e) == typeid(stop_event))

{

do_stop(static_cast<stop_event const&>(e));

return stopped;

}

if (typeid(e) == typeid(pause_event))

{

do_pause(static_cast<pause_event const&>(e));

return paused;

}

throw std::logic_error(

"unexpected event: " + typeid(e).name()

);

return m_state;

}

Still, if the number of events being handled from particular state is large, the
problem remains. Of course, the fact that the technique tends to lead to large
functions is only one side of the problem; after all, you can split the functions
even further - and that’s in fact what the State pattern does.

Another obvious thing about it that most of the code is boilerplate. What you
tend to do with boilerplate code is copy and paste it, and then change names
etc. to adjust it to its new location, and that’s there the errors are most likely to
creep in - since all the lines of events processing look alike (structurally), it’s
very easy to overlook or forget something that’s need to be changed, and many
of such errors won’t appear until the runtime.

Note that all the implementations we’ve looked on has this common trait -
the transition table of our FSM is just a 5-lines table, and ideally, we would like
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the skeleton implementation of the automata’s controlling logic to be equally
small (or, at least, to look equally small, e.g. to be encapsulated in some form
so we never see/worry about it).

4.1. Implementing it
To represent the TTS in C++ program, we define atransition class tem-

plate that represents a single line of the table, and than the table itself can be
represented as a sequence of such lines:

typedef list<

transition<stopped, play_event, playing, &player::do_play>

, transition<playing, stop_event, stopped, &player::do_stop>

, transition<playing, pause_event, paused, &player::do_pause>

, transition<paused, play_event, playing, &player::do_resume>

, transition<paused, stop_event, stopped, &player::do_stop>

>::type transition_table;

Now, the complete FSM will look like this:

class player

: state_machine<player>

{

private:

typedef player self_t;

// state invariants

void stopped_state_invariant();

void playing_state_invariant();

void paused_state_invariant();

// states (invariants are passed as non-type template arguments,

// and are called then the FSM enters the corresponding state)

typedef state<0, &self_t::stopped_state_invariant> stopped;

typedef state<1, &self_t::playing_state_invariant> playing;

typedef state<2, &self_t::paused_state_invariant> paused;

private:

// event declarations; events are represented as types,

// and can carry a specific data for each event;

// but it’s not needed for generator, so we define them later

struct play_event;

struct stop_event;

struct pause_event;
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// transition functions

void do_play(play_event const&);

void do_stop(stop_event const&);

void do_pause(pause_event const&);

void do_resume(play_event const&);

// STT

friend class state_machine<player>;

typedef mpl::list<

transition<stopped, play_event, playing, &player::do_play>

, transition<playing, stop_event, stopped, &player::do_stop>

, transition<playing, pause_event, paused, &player::do_pause>

, transition<paused, play_event, playing, &player::do_resume>

, transition<paused, stop_event, stopped, &player::do_stop>

>::type transition_table;

};

That’s all - the above will generate a complete FSM implementation accord-
ing to our specification. The only thing we need to start using it is to define the
events types (that were just forward declared before):

// event definitions

struct player::play_event

: player::event

{

};

// ...

The usage is simple as well:

int main()

{

// usage example

player p;

p.process_event(player::play_event());

p.process_event(player::pause_event());

p.process_event(player::play_event());

p.process_event(player::stop_event());

return 0;

}
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4.2. Related work
A notable prior work in the field of automation of general-purpose state ma-

chine implementation in C++ is the Robert Martin’s State Machine Compiler
?. The SMC takes an ASCII description of the machine’s state transition table
and produces a C++ code that implements the FSM using a variation of State
design pattern?, ?. ? presents another approach, where no external tools are
used, and the FSMs are table driven.

GLOSSARY

Metaprogramming the creation of programs which generate other pro-
grams.

Metadata the program specification processed by a metaprogram.
Meta-language defines the metadataconstructs accepted by the metapro-

gram.
Higher-Order Function is a function that can take other functions as ar-

guments, and/or return functions as results. Higher-order functions are a
distinguishing features of the modern functional languages?.

polymorphic A function ispolymorphicif it can take arguments of an arbi-
trary type (a C++ term from the run-time world would be “generic”)
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